Multiple crystallization pathways of amorphous calcium carbonate in the presence of poly(aspartic acid) with a chain length of 30

摘要

The crystallization pathways of amorphous calcium carbonate (ACC) have attracted tremendous interest because of the importance of ACC in biomineralization. Here, by using poly(aspartic acid) with a chain length of 30 (pAsp-30) as an additive, we show multiple crystallization pathways of ACC depending on the concentration of pAsp-30. Although ACC transforms into a mixture of calcite and vaterite via a typical dissolution recrystallization mechanism at low concentration of pAsp-30, a pseudomorphic transformation from ACC into pure vaterite was observed at intermediate concentration of pAsp-30. These vaterite nanoparticles then aggregated and transformed into pure calcite by a local dissolution recrystallization mechanism. Further increasing the concentration of pAsp-30 inhibited the aggregation of vaterite nanoparticles and led to the formation of a mixture of calcite and vaterite again. Additionally, the formation of both vaterite and calcite by a particle attachment crystallization mechanism was also observed. By simply changing the concentration of pAsp-30, delicate control of the polymorph selection between pure calcite and pure vaterite can be easily achieved. These results significantly improve our understanding of the crystallization mechanism of ACC and the role of additives in controlling the crystallization pathways.

类型
出版物
CrystEngComm
黄文洋
黄文洋

碳酸钙晶体生长调控机制研究

汪琦航
汪琦航
博士后

博士后,主要研究方向包括无机离子调控碳酸钙晶体生长过程、陶瓷材料室温致密化等

邹朝勇
邹朝勇
研究员

武汉理工大学材料复合新技术国家重点实验室研究员,国家级高层次人才(青年项目),湖北省高层次人才,主要研究方向是生物过程启示的制备技术